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New chromogenic anion receptors 2 and 4 utilizing quinoline and nitrophenyl groups as signaling groups
were synthesized. In these receptors, amide and amine groups made strong multiple hydrogen interac-
tions with anions. The receptors 2 and 4 bind anions with a selectivity of F� > CN� > CH3CO2

� and proved
to be an efficient naked-eye detector for the fluoride and cyanide ion.

� 2010 Published by Elsevier Ltd.
The design and synthesis of efficient receptors capable of bind-
ing biologically and environmentally important anionic species has
received considerable interest in recent years.1 Most of these sen-
sors contain chromogenic or fluorogenic groups that are covalently
or non-covalently linked to the receptor moiety, thus enabling the
colorimetric and fluorimetric sensing of anions.2

Many chemical sensors follow the approach of the covalent
attachment of signaling subunits and binding sites.3 Hydrogen-
bonding sites as binding sites typically used in chromogenic or
fluorogenic chemsensors are ureas,4 thioureas,5,2b calyx[4]pyr-
roles,6 sapphyrins,7 amines8, and amides.9 Usually a single hydro-
gen bond is weak and multiples of such interactions must be
applied for efficient complexation of anions. Among the binding
units mentioned above, amide and amines are the most biologi-
cally relevant groups. They are inspired by anion binding proteins
that exploit the hydrogen bond donor properties of neutral amide
N–H and amine NH2 groups.4a–e

Previously, we reported on novel colorimetric receptors con-
taining a nitrophenyl group or a benzophenone group as chromo-
genic signaling subunit and urea/thiourea as binding sites, which
were selective for fluoride or acetate ion.10 As an extension of
our efforts, we have designed new simple receptors 2 and 4, which
have both a nitrophenyl group and a quinoline group as chromo-
genic signaling subunits. In these receptors, amide and amine
groups are incorporated so that anions can make strong multiple
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interactions with the hydrogen atoms of these groups through
hydrogen bonding.

These receptors were found to be an efficient detector for fluoride
and cyanide. The anion recognition via hydrogen-bonding interac-
tions could be easily monitored by anion-complexation induced
changes in UV–vis absorption spectra and with the naked eye.

The receptors 2 and 4 were synthesized by the reaction of both
2- or 4-nitroaniline and 8-aminoquinoline group with a simple
2-bromoacetyl bromide (Schemes 1 and 2).11 The X-ray structure
Scheme 1. The synthetic procedure for the anion receptor 2.
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Figure 1. The structure of 2 showing the atom-labeling scheme. Displacement
ellipsoids are shown at the 50% probability level.

Scheme 2. The synthetic procedure for the anion receptor 4.
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of 2 is shown in Figure 1. The crystallographic data, and the
selected bond lengths and angles are given in Tables S1 and S2
(see Supplementary data).

The receptors 2 and 4 displayed strong absorption bands at
320 nm and 346 nm in acetonitrile, respectively. Figure 2 shows
the family of spectra obtained over the course of the titration of
solution 2 with tetrabutylammonium fluoride in acetonitrile. As
fluoride ions were added to the 40 lM solution of 2, kmax of 2
moved from 320 nm to 431 nm and the spectra showed the clear
isosbestic point at 356 nm. In the case of 4 in acetonitrile solution
at the same concentration, the intensity of the peak at 346 nm was
decreased as fluoride ions were added and the spectra showed an
isosbestic point at 369 nm (Fig. 2b). The presence of the sharp
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Figure 2. Family of spectra recorded over the course of titration of 40 lM aceto
tetrabutylammonium fluoride and 2 (c) and 4 (d) with the standard solution tetrabutyl
isosbestic point for both compounds indicates that only two spe-
cies were present at equilibrium over the course of the titration
experiment. From the titration experiments, it was found that both
compounds 2 and 4 were deprotonated by the basic fluoride ion.12

The deprotonation was confirmed through the titration experi-
ments with tetrabutylammonium hydroxide ion (Fig. 2c and d).
Assuming 1:1 stoichiometry, a Benesi–Hildebrand plot13 by use
of absorption intensity change at 320 nm and 346 nm gave equilib-
rium constants for deprotonation. From the experiments, the
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nitrile solution of the receptors 2 (a) and 4 (b) with the standard solution
ammonium hydroxide.



Figure 3. 1H NMR spectra of 2 mM of 2 with increased amounts of tetrabutylammonium fluoride (0–6.5 equiv) in CD3CN.
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Figure 4. Family of spectra recorded over the course of titration of 40 lM acetonitrile solution of the receptor 2 with the standard solution tetrabutylammonium cyanide (a)
and tetrabutylammonium aceatate (b).
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equilibrium constants of the receptors 2 and 4 for fluoride were
calculated as 1.7 � 103 and 8.3 � 102 M�1, respectively.

This phenomenon could be confirmed by a 1H NMR titration. In
CD3CN, amide N–H hydrogen peaks of receptors 2 and 4 became
invisible upon addition of fluoride ion. However, amine peaks of
the compounds 2 and 4 showed downfield shifts. For example,
the amine peak of the compound 2 which appeared about
6.90 ppm showed a downfield shift until 7.18 ppm, indicating that
both amide and amine participate in the binding event (Fig. 3).
These results suggest that both compounds 2 and 4 interact with
fluoride through hydrogen bonds. Another evidence of deprotona-
tion phenomenon of amide hydrogen was also observed from the
chemical shift during titration. For example, in the case of
compound 2, the doublet at 7.8 ppm moved slightly downfield
when the fluorides added are less than 1 equiv (Fig. 3), and then
showed large upfield shifts when more than 2 equiv of fluoride
added. However, when tetrabutylammonium hydroxide was added
to the solution of compound 2, the doublet at 7.8 ppm showed only
upfield shifts (data not shown). Therefore, it is likely that the initial
downfield shift arises from H-bonding to the anion, but the subse-
quent upfield shift could be explained by the deprotonation of
amide hydrogen.
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Figure 5. Job plots of the receptor 2 and various anions.

Table 1
The association constants (M�1) of the receptors 2 and 4 with various anions in
acetonitrile

Anion 2 4

UV (Ka) NMR (Ka) UV (Ka) NMR (Ka)

F� 1.7 � 103 1.6 � 103 8.3 � 102 5.0 � 102

CH3CO2
� 8.8 � 102 1.5 � 102

CN� 1.6 � 103 2.8 � 102

C6H5CO2
� 4.1 � 102 9.6 � 10

H2PO4
� 4.6 � 102 1.4 � 10

Cl� 8.4 � 10 —
Br� 4.1 � 10 —
I� 3.5 � 10 9
HSO4

� 1.1 � 10 —
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For titration, CH2 peak next to amide group or amine peak was
used. For example, in the case of receptor 2, CH2 peak next to
amide appeared at 4.17 ppm. This signal moved from 4.17 ppm
to 3.89 ppm until 6.5 equivalents of fluoride ion were present
and no more shifts were observed. In fact, two effects are expected
as a result of hydrogen bond formation between the receptor sub-
unit and the anion; (i) A through-bond propagation, which causes a
Figure 6. The color changes of the receptors 2 (a) and 4 (b) when 100 lM acet
shielding effect and promotes an upfield shift and (ii) A through-
space effect, which causes deshielding and promotes a downfield
shift. In this case, through-bond propagation dominates, and an
upfield shift is observed.

Analysis of chemical shift utilizing EQNMR14 gave equilibrium
constants 1.6 � 103 and 5.0 � 102 M�1 for the receptors 2 and 4,
respectively, which are similar values obtained from UV–vis
titration.

With cyanide, a similar phenomenon was observed. In UV–vis
titration with cyanide, kmax of 2 was moved from 320 nm to
431 nm and spectra showed the clear isosbestic point at 356 nm
again (Fig. 4). From the experiments, the equilibrium constants
for cyanide were calculated as 1.6 � 103 and 2.8 � 102 M�1 for
the receptors 2 and 4, respectively. Fluoride and cyanide showed
similar deprotonation equilibrium constants for the receptors 2
and 4.

However, titration spectra of acetate were somewhat different
with those of fluoride and cyanide. For example, as acetate ions
were added to the 40 lM solution of 2, the spectra shifted slightly
to longer wavelength and showed a new isosbestic point at 326 nm
(Fig. 4b). Spectra with the new isosbestic point at 326 nm without
a kmax at 431 nm suggest that hydrogen bonding is a predominant
interaction in the case of acetate at the concentration we
investigated.

We also investigated association constants of other anions.
Their binding stoichiometry was determined with the Job plot
and 1: 1 binding was confirmed (Fig. 5). The results are summa-
rized in Table 1. The receptors 2 and 4 interact with most of anions
through hydrogen bonding at the concentration we investigated
except fluoride and cyanide. In addition, the receptor 2 showed
higher affinities than the receptor 4 for the all the anions investi-
gated. These results could be explained by two possibilities: (1)
one is that the inductive effect of 4-nitro group is stronger than
that of 2-nitro group in the benzene ring and (2) the other is that
2-nitro group has an intra-molecular H-bonding to the hydrogen
atom of the amide group, thus inhibiting the hydrogen bonding
with anions.

Figure 6 shows the color change of the solutions of the receptors
2 and 4 upon additions of various anions in DMSO. It can be seen
that the color changes from colorless to yellow in the presence of
fluoride and cyanide with naked eye. As expected, the color change
was more distinct in the receptor 2. However, the receptor 4
showed more selective color change than the receptor 2. Other an-
ions did not induce any color changes even with excess amounts.
onitrile solutions of receptors were treated with 5 equiv of various anions.
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In summary, we developed new chromogenic anion receptors 2
and 4 utilizing quinoline and nitrophenyl group as the signaling
group. The receptors 2 and 4 bind anions via hydrogen bonds with
a selectivity of F� > CN� > CH3CO2

� and proved to be an efficient
naked-eye detector for the fluoride and cyanide ion.
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